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Abstract
We investigate the dielectric resonance, local field distribution and optical
response of randomly ordered nanometre metallic cells in two-dimensional
composites using the Green’s function formalism. It is found that the
microstructure of a single cell determines the bandgap profiles of dielectric
resonances, showing that these metallic cells have locally resonant structures.
One or several defect bonds are introduced into each cell, expressed as the
difference admittance ratio η = (ε2 − ε0)/(ε1 − ε0). With varying η,
the resonance bandgaps and effective optical absorption spectra are modified
according to the single cell response, or local resonance structure. However,
near resonances, the local field distributions from the localized modes to
extended modes are shown to be the collective response of the whole material,
rather than a single cell response. The results will be beneficial to the study of
surface plasmon resonances in nanometre metallic clusters.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Photonic crystals have attracted great interest due to the existence of photonic band gaps [1–3].
In periodically arranged dielectric materials, light of allowed modes can transmit the materials,
while others are almost completely inhibited. Recently, metallic–dielectric photonic crystals,
where at least one component possesses the negative dielectric constant, have also attracted
attention [4–8]. In some metallic–dielectric photonic crystals, the bandgap could begin almost
at the zero frequency, and there is a cutoff frequency in the transmission spectrum [4, 5].
When defects are introduced into metallic–dielectric materials, some particular light modes
will appear, having an obvious effect on the transmittance, absorption, refraction and
reflection [6, 7].
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Figure 1. Schematic diagram of metallic cells (ε1), shown in thick lines, embedded in a 2D
dielectric network (ε0): (a) single cell; (b) periodically arranged cells [19]; (c) randomly arranged
cells; and (d) coloured cell (one bond is different from the others, with admittance ε2).

In the quasistatic limit, due to the simultaneous existence of positive and negative
admittance in metallic–dielectric composites, many dielectric resonances happen [9, 10].
Near resonance, the electric field is very localized within and around the impurity
metallic clusters [11] and strongly enhances the effective linear and nonlinear optical
responses [12–14]. These resonances exist both in isolated clusters [11] and in various
disordered composites [15, 16], appearing as a very localized field distribution, or ‘hot’
spots [17, 18]. In periodic metallic arrays, the bandgaps of dielectric resonance and very
localized defect modes have been reported [19]. Also, in the fractal structured metallic–
dielectric composites, similarities of dielectric resonance, local field distribution and optical
response have been predicted [20]. Then, for a structure between random and regular, what
would the dielectric resonance properties be? To answer this question, in the present study we
investigate the dielectric resonance spectra and optical responses of random metallic cells in
metallic–dielectric composites.

In the discrete metallic–dielectric lattice model, it is well known that the number of
metallic bonds equals the number of dielectric resonances, while its micro geometry determines
the position of resonances [9, 11, 14]. For example, consider a single cell cluster with four
bonds, as shown in figure 1(a). There are four dielectric resonances, as in figure 2(a). Our
numerical calculations indicate that, in the periodic arrays (figure 1(b)), the bandgap profiles of
dielectric resonances as in figure 2(b) [19] correspond to those found in a single cell, as well
as in the randomly arranged metallic cells in figure 2(c). That is to say, the microstructure of
a single cell approximately determines the resonance properties of the whole system, which is
a phenomenon that we call local dielectric resonance. This kind of local resonance has been
reported in sonic materials [21]. The local resonance mentioned here is different from the
general localization of resonance in that, in general cases, the electric field is very localized in
the metallic clusters when resonance occurs.

In the following, using the Green’s function formalism (GFF) in the two-dimensional (2D)
network composite [11, 15], we describe our investigations of the dielectric resonance, local
field distribution near resonance, and optical response of random metallic cells with admittance
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Figure 2. DOS (density of states) of dielectric resonances: (a) single cell; (b) periodically arranged
cells; and (b) randomly arranged cells. s (= 1

1−ε1/ε0
) is the eigenvalue of matrix M̃ .

ε1 embedded in the dielectric host with ε0. Several bandgaps appear in the dielectric resonance
spectrum. The number of bandgaps is determined by the micro geometry of a single cell due
to the local dielectric resonance of metallic cells. Then, one or several defect bonds with ε2

are introduced into each cell, expressed as the difference admittance ratio [15] η = ε2−ε0
ε1−ε0

.
When η varies from +∞ to −∞, one or several branches of dielectric resonances change
correspondingly from +∞ to −∞, leading to the modification of resonance bandgaps and
of optical responses. Simultaneously, we check the local field distribution near resonances.
Our numerical calculations indicate that, near resonances, the local field distributions from the
localized mode to the extended mode are shown to be the collective response of the whole
material, rather than a single cell response. These results will be beneficial to the study of
surface plasmon resonances in nanometallic clusters.

The paper is organized as follows. In section 2, we first review the GFF of two- and
three-component composites in 2D networks; then the local dielectric resonance for random
metallic cells is proposed. In section 3, when the defect bonds are introduced into each cells, the
resonance bandgap modification is presented. In section 4, we calculate the optical responses
of random cells with varying η. In section 5, the inverse participation ratio (IPR) (which is
used to represent the localization of the field) and the corresponding local field distributions
near resonances are given. Finally, we summarize the main results in the last section.

2. Local dielectric resonance of random cells

2.1. Review of Green’s function formalism

A Green’s function method was developed to analyze the static macro conductance by
solving Kirchhoff’s equations in the resistor networks [22]. Here we use the Green’s
function formalism to compute the resonant properties of binary and three-component network
composites in two dimensions (2D) and three dimensions (3D) [11, 14, 15]. The salient
properties of GFF are first reviewed. As shown in figures 1(a) and (d), referring to [11, 15],
the impurity metallic clusters of admittance ε1 are employed to replace bonds of an otherwise
homogeneous network of identical admittance ε0. In this lattice model, the bonds are assumed
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to be infinitely thin and the lattice constant is on the nanometre scale, which is much smaller
than the wavelength of visible light. Here, solid thick lines are used to represent the metallic
bonds with ε1. In the Drude free electronic model, the admittance ε1 is frequency dependent
and always negative below the plasma frequency. For the rest of the metallic cells, the bonds
have the admittance ε0 and they are always assumed to be unity. For a unit point source placed
at site 0 = (0, 0) outside a set of clusters of ns sites, in the quasi-static limit, the electric
potential V satisfies the Kirchhoff equation

∑

�y(�x)

ε�x,�y(V�x,0 − V�y,0) = δ�x,0, (1)

where �x = (x1, x2) and �y(�x) denotes the four nearest neighbouring sites of �x; V�x,0 is the
electrostatic Green’s function at �x due to the point source, and ε�x,�y = ε�y,�x is the admittance of
the bond joining the neighbouring sites �x, �y. Let v = 1−ε1/ε0; equation (1) can be transformed
to a general form:

V�x,0 = G�x,0

ε0
+ v

∑

�y∈C

M�x,�y V�y,0, (2)

where Mx,y = ∑
z∈C(y) (Gx,y − Gx,z), and G�x,�y is the Green’s function of a Laplace operator

on a square lattice, i.e., −�Gx,y = δx,y with Gx,x = 0. The microstructure of impurity
metallic clusters is completely mapped by the square matrix M̃ in the clusters subspace. Then
nontrivial eigenvalues s (= 1

1−ε1/ε0
) of M̃ construct the dielectric resonance spectrum. For a

binary metallic–dielectric network, the resonance is restricted in the range 0 � s � 1 and
ε1
ε0

has a branch cut in the negative real axis [9, 11]. Then the third component ε2 (or a defect

cluster C2) is introduced into the clusters, expressed by a difference admittance ratio η = ε2−ε0
ε1−ε0

,

shown as the dashed line in figure 1(d). The element of Green’s matrix M̃ becomes [15]
M̃x,y = ∑

z∈C1(y)(Gx,y − Gx,z) + η
∑

z∈C2(y)(Gx,y − Gx,z), where Ci means the i th cluster.

The Green’s matrix M̃ is greatly modified with varying η. The eigenvalues of M̃ (or the
dielectric resonances) are extended to −∞ � s � ∞. When η is negative, there exists at least
one negative eigenvalue [15]. These dielectric resonances obey the 2D sum rule [9, 11, 23]:∑n

i=1 si = n2
2 η + n1

2 , where n1 is the number of bonds with the admittance ε1, and n2 is the
number with ε2.

When dielectric resonance occurs, the field is localized within and around the impurity
metallic clusters. To remove the infiniteness near the resonance, the residue of the electrical
potential is given as [11]

Residue(Vx,0) = 1

ε0

(∑

y∈C

L̃m,yG̃y,0

)(∑

z∈C

Mx,z R̃m,z

)
, (3)

where R̃m and L̃m are the mth normalized right and left eigenvectors of the Green’s matrix M̃ .
For more details, one can refer to [11, 15].

The GFF method was established in the quasi-static Kirchhoff equations, as well as other
Green method [22] and the lattice models in [10, 24]. From the above description, the developed
GFF in composite networks can not only give the dielectric resonances of the arbitrary metallic
clusters, but can also give their local field distributions near resonances. While using the method
of Kirchhoff Hamiltonians [24], ε1 = −ε0 is always assumed, and the scaling and fluctuations
of the electric field moments in the percolating composites are reported.

To model the optical responses, the Drude free electronic model is commonly used to

represent the frequency-dependent admittance with ε1 = 1 − ω2
p

ω(ω+iγ )
, where ωp is the plasma

frequency, and γ is a damping constant. For metal, ωp ≈ 1016, which is in the ultraviolet. We
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choose γ = 0.05ωp, which is the typical value for metal. Let ε0 = 1.77, which is the dielectric
constant of water for model calculations. The range of optical responses is ω/ωp ∈ (0, 1). The
defect admittance ε2 changes with η accordingly. Subject to a uniform field E0 (=1) along the x
direction, in the quasi-static limit the effective linear optical responses (or the absorption) along
the applied field can be expressed as the imaginary part of the effective coefficient εe [9, 12]:

Im εe = − Im
ns∑

n=1

∑
y∈C Ln,y y1

∑
x,y∈C(x1 − y1)(R̃n,x − R̃n,y)

ε0(s − sn)
. (4)

Let γn = ∑
y∈C Ln,y y1

∑
x,y∈C(x1 − y1)(R̃n,x − R̃n,y), and it obeys the sum rule [9, 12]:∑

n γn = Nh, where Nh is the number of horizontal bonds along the applied field.

2.2. Dielectric resonance bandgap of random cells

The resonant properties of regular structures have been studied. In periodic arrays, there exist
bandgaps of dielectric resonances [19], while in fractals the similarity of dielectric resonance
distribution is predicted [20]. Now we want to know the dielectric resonance of randomly
ordered metallic cells, whose structure is between regular and random. Numerical calculations
indicate that the resonant properties of random cells are more like those found in the periodic
arrays. The main reason is that the bandgap profiles of random cells are determined by the
dielectric resonance of a single cell, exhibited as the local dielectric resonance mentioned
above. Here, the four-bond metallic cell is only a representation of the arbitrary shaped clusters,
rather than an oddly shaped metallic cluster or a particularly shaped cluster.

Figure 2 displays the density of states (DOS) of dielectric resonances of a single cell,
periodic arrays, and random cells in 2D metallic–dielectric networks. Here, the statistical
interval of resonances is �s = 0.02 and the region s ∈ (0, 1). In the periodic arrays, the
sample size is 30 × 30 and the concentration of the metallic part is p = 20%. The metallic
cells are randomly distributed in the dielectric host with the same size and concentration as
the periodic arrays and without any sticking between them. In figures 2(b) [19] and (c), the
dielectric resonance bandgaps appear in the spectrum of s. As shown in figure 2(a) the DOS of
each state is 0.25, and in figures 2(b) and (c) the sum of each resonance band is also normalized
to 0.25. The resonance branches correspond to the dielectric resonances of a single cell. Both
in the periodic arrays and in random cells, the bandgap profiles of dielectric resonance are
determined by the microstrucure of a single cell, shown as a local dielectric resonance. This is
similar to the local resonance of sonic materials reported in [21]. The forming of the dielectric
resonance bands can be regarded as the eigenvalues perturbation of a single cell by others. In
a single metallic cell, the first and second resonances are very close. Then, in figure 2(c), due
to the large perturbation, the first and second bands join together and the gap disappears. We
also found that, with increasing concentration p of metallic cells, the resonance bands become
wider due to the larger perturbation of neighbouring cells.

3. Dielectric resonance bandgap modification with defects

In this section, we introduce one or several defect bonds into metallic cells. The resulting cells
are called coloured cells. All coloured metallic cells have the same micro geometry, or the
defect bonds with admittance ε2 exist at the same position of each cell, as shown in figure 1(d).
Then, what happens to their resonant properties? Generally, we use the difference admittance
ratio η (= ε2−ε0

ε1−ε0
) to represent the defect, instead of the admittance ε2 [15]. We expect that the

coloured metallic cells should also exhibit the local resonance properties. In this and in the next
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Figure 3. DOS of dielectric resonances for random metallic coloured cells with varying η (= ε2−ε0
ε1−ε0

).

Here, each coloured cell includes one defect bond. s (= 1
1−ε1/ε0

) is the eigenvalue of M̃ .

Figure 4. DOS of dielectric resonances for random metallic coloured cells with varying η (= ε2−ε0
ε1−ε0

).

Here, each coloured cell includes two defect bonds. s (= 1
1−ε1/ε0

) is the eigenvalue of M̃ .

two sections, we investigate the effect of defect modes on the DOS, local field distribution near
resonance, and the optical response of random metallic cells embedded in the dielectric host.

Figure 3 displays the DOS of dielectric resonances of random coloured cells with one
defect bond. Here, η = −2.0,−1.0, 0.0, 0.5, 1.0, 2.0. When η = −2.0, one of four resonance
bands is left-shifted due to the existence of the defect, as shown in figure 3(a), while for η = 2.0,
one band is right-shifted, as shown in figure 3(d). Comparing η = −2.0 in figure 3(a) with
η = −1.0 in figure 3(b), we find that, when η is smaller (or larger), one of the bands is more
left-shifted (or right-shifted). When η = 1.0, the system once again becomes the binary, so the
DOS spectrum in figure 3(e) is the same as that shown in figure 2(c). Another binary case is
η = 0.0 in figure 3(c), where three dielectric resonance bands appear. When η ∈ (0.0, 1.0), for
example η = 0.5 in figure 3(d), the defect modes fall into the region s ∈ (0.0, 1.0), leading to
complicated modification of the bands. Then, in figure 4, we plot the DOS of random coloured
cell with two defect bonds. Similar results are obtained. When η is larger or smaller, there
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Figure 5. Effective linear optical responses for the single cell shown in figure 1(a), with 0◦ or 180◦
rotation shown in (a), and with 90◦ or 270◦ rotation shown in (b).

are two resonance bands left-shifted or right-shifted, as shown in figure 4(a) for η = −2.0 or
figure 4(f) for η = 2.5. Comparing figure 4(a) for η = −2.0 with figure 4(b) for η = −1.0,
we find that two bands are more left-shifted and have larger bandgaps. We can also conclude
that, for the larger (or smaller) η, two bands are more left-shifted (right-shifted) and have larger
bandgaps. When η = 1.0 in figure 4(e), the sample reverts to a binary case, the same as that in
figures 3(e) and 2(c). But, for η = 0.0, it is also a binary case with two resonance bands. As
was found in figure 3(d), for η = 0.5 as in figure 4(d), we almost could not distinguish the first
and second bands and the bandgap, which indicates complicated behaviour.

From figures 3 and 4, we conclude that the resonance band modification of random
coloured metallic cells is determined by the DOS spectra of a single coloured cell, also
exhibiting a local dielectric resonance. When one or two resonance bands are shifted, other
bands are kept almost at the original positions. Further numerical calculations indicate that,
for the different configuration of defects in coloured cells, the modification of resonance bands
with varying η has little difference. When η is large, the influence of defect parts is outside the
region of optical responses, as shown in the following figures 6(e) and (f).

4. Optical response

Figure 5 displays the optical responses of a single cell. Since, in a single cell, there are four
dielectric resonances, here the maximum four optical responses are shown. For a single cell
in figure 1(a), there are two different configurations along the external field, so two kinds of
responses are shown in figures 5(a) and (b), respectively. In the discussed metal–dielectric
composites, the metallic cell is randomly distributed so, for each cell, a random configuration
is chosen. The optical response of the whole system should be a superposition of two kinds
of response. Considering a more general case, in figure 6 we give the statistical averaging of
optical responses of the whole system.

Next, we introduce one defect bond in each cell. With varying η, in figure 6 we plot the
effective linear optical responses of random metallic coloured cells. Here the sample size is
30×30. For each η, 5000 samples are used for the statistical averaging. We focus our attention
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Figure 6. The statistical averaging of effective linear optical responses of random metallic cells
with varying η (= ε2−ε0

ε1−ε0
).

Figure 7. IPR of random metallic coloured cells with one defect bond at different η (= ε2−ε0
ε1−ε0

).

on avoiding the crossing area [15] η ∈ (0, 2). The modification of optical responses also shows
the local resonance of a single coloured cell. When η is too small or too large, the influence of
defects is out of the spectral region ω ∈ (0, 1), as shown in figures 6(a) and (f). At η = 0.0,
the defects merge into the dielectric host and only three absorption peaks are left in figure 6(b),
while at η = 1.0, four absorption peaks appear as shown in figure 6(d). For η ∈ [0, 1],
the defect modes are obviously within the area ω ∈ (0, 1), forming a four-peaked absorption
spectrum, as shown in figure 6(c). For η ∈ [1, 2], the defect modes fall approximately outside
the region ω ∈ (0, 1), which influenced the positions of absorption peaks, instead of their
intensities. So, when η ∈ (0, 1), both the metallic bonds ε1 and ε2 contribute to the optical
responses, while for η /∈ (0, 1), only the metallic bonds ε1 work. This leads to about the same
absorption profiles for both η → −∞ shown in figure 6(a) and η → +∞ in figure 6(f).
However, as emphasized in figure 9, the main optical absorption peaks corresponds to the very
extended local field, indicating a collective response.
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Figure 8. The optical response (a) and IPR (b) of random cells, as shown in the sample of figure 1(c).
The eigenmodes with strong optical responses and with high values of IPR are flagged in the figure.
s (= 1

1−ε1/ε0
) is the eigenvalue of M̃ .

5. Local field distribution near resonance

From the above investigations, we know that the distribution of dielectric resonances and the
static optical responses are determined by the single cell response; i.e., these metallic cells have
a local resonant microstructure. If only a single cluster exists, when resonance happens, the
electric field is localized within or around the metallic clusters [11]. However, for a composite
containing many metallic cells, the field distributions near resonances do not clearly depend
on one or several cells, indicating a collective response of the whole material. In this section,
in order to expand our knowledge of the local field distribution near resonance, we first give
the evolution of the inverse participation ratio (IPR) with varying difference admittance ratio η.
Then, for a special sample figure 1(c), we give several 3D plots for the local field distributions
of high optical response modes and high IPR modes to confirm that these eigenmodes (local
fields) have the collective response of the whole material.

To represent the field localization, the IPR [25] with q = 2 of the right eigenvector is
defined by IPR(Rn) = ∑ns

i=1 Rn,i
4, where 〈Rn

2〉 = 1. The higher value of IPR represents
a more localized field, while the lower value of IPR represents the very extended field
distribution. Figure 7 displays the IPR of random metallic coloured cells with one defect bond
at different η, using a 30 ×30 sample. From the figure, we can see that most of the eigenmodes
have very low IPR values, below 0.1. Only a very few of them have high IPR values. With
varying η from −2.0 in figure 7(a) to 2.0 in figure 7(f), though the defect resonance band is
moving, the distribution of IPR values do not have much adjustability. Please note that the IPR
could not reflect the intensity of the electric field, so the high value of IPR could not represent
the strong optical responses, because in the IPR calculations the intensity of the local field is
normalized. The following example demonstrates this point directly.

Figure 1(c) is a typical sample of random metallic cells. Though its size is small (only
10 × 10), it is enough to represent the optical response and local field distribution of random
metallic cells, but it is convenient to compare the positions of cells with the local field
distribution. As shown in figure 8, the optical responses and the IPR distribution have features
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Figure 9. 3D plots of local field distributions with strong optical response states: (a) s = 0.2242
and IPR = 0.0597; (b) s = 0.3100 and IPR = 0.0860; and (c) s = 0.5780 and IPR = 0.1283.

similar to the larger samples (expressed as a statistical averaging). The electric potentials of
the sites can be computed directly using equation (3). Figure 9 shows the 3D plots of local
field distributions corresponding to three main absorption peaks in figure 8(a). In figure 9(a),
s = 0.2242 and IPR = 0.0597; in figure 9(b), s = 0.3100 and IPR = 0.0860; and in
figure 9(c), s = 0.5780 and IPR = 0.1283. It is seen that, for large optical responses, the fields
have very extended distributions, which are expressed as the lower IPR values in figure 8(b).
Comparing them with figure 1(c), we conclude that there is no obvious correspondence between
the metallic cells and the field distribution. Then, in figure 10, we give the 3D plots of local field
distributions with high IPR values. As shown in figure 8(b), s = 0.5975 and IPR = 0.3851 in
figure 10(a); s = 0.8248 and IPR = 0.2608 in figure 10(b); and s = 0.2828 and IPR = 0.1798
in figure 10(c). The figures indicate that the fields are localized within very small areas, but their
intensities are much smaller than those extended fields contributing to the absorption peaks. In
these modes, we could not obtain the obvious correspondence between the metallic cells and
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Figure 10. 3D plots of local field distributions with high IPR value states: (a) s = 0.5975 and
IPR = 0.3851; (b) s = 0.8248 and IPR = 0.2608; and (c) s = 0.2828 and IPR = 0.1798.

localized fields. Therefore, we conclude that the local field distributions near resonances show
a collective response of the whole material.

6. Summary

In this work, we have investigated the dielectric resonance, optical response, and local field
distribution of randomly ordered metallic cells in composite materials. On the one hand, it
is found that the microstructure of single cells determines the bandgap profiles of dielectric
resonances and the optical responses, showing that these metallic cells have a locally resonant
structure. When we introduce one or several defect bonds into each cell (expressed as the
difference admittance ratio η = (ε2 − ε0)/(ε1 − ε0)), the resonance bandgaps and effective
optical absorption spectra are still modified according to the single cell response. On the other
hand, near resonances, the local field distributions from the localized modes to the extended
modes are shown to be the collective response of the whole material, rather than a single
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cell response. These results will be beneficial to the study of surface plasmon resonances of
nanometre metallic clusters.
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